Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38364947

RESUMO

PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.

2.
Mol Cancer Res ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393317

RESUMO

The p53 tumor suppressor protein, a sequence specific DNA binding transcription factor, regulates the expression of a large number of genes, in response to various forms of cellular stress. While the protein coding target genes of p53 have been well studied, less is known about its role in regulating long non-coding genes and their functional relevance to cancer. Here we report the genome-wide identification of a large set (>1000) of long non-coding RNAs(lncRNAs) that are putative p53 targets in a colon cancer cell line and in human patient datasets from five different common types of cancer. These lncRNAs have not been annotated by other studies of normal unstressed systems. In the colon cancer cell line a high proportion of these lncRNAs are uniquely induced by different chemotherapeutic agents that activate p53, while others are induced by more than one agent tested. Further, subsets of these lncRNAs independently predict overall and disease-free survival of patients across the five different common cancer types. Interestingly, both genetic alterations and patient survival associated with different lncRNAs are unique to each cancer tested, indicating extraordinary tissue-specific variability in the p53 non-coding response. The newly identified non-coding p53 target genes have allowed us to construct a classifier for tumor diagnosis and prognosis. Implications: Our results not only identify myriad p53-regulated lncRNAs, they also reveal marked drug-induced, as well as tissue- and tumor-specific heterogeneity in these putative p53 targets and our findings have enabled the construction of robust classifiers for diagnosis and prognosis.

3.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352515

RESUMO

Recent advances in single-cell RNA-sequencing (scRNA-seq) technology have facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate. Here we present meta-analyses of multiple new and published scRNA-seq datasets to establish reference cell type classifications for the normal mouse and human prostate. Our analyses demonstrate transcriptomic similarities between epithelial cell states in the normal prostate, in the regressed prostate after androgen-deprivation, and in primary prostate tumors. During regression in the mouse prostate, all epithelial cells shift their expression profiles towards a proximal periurethral (PrU) state, demonstrating an androgen-dependent plasticity that is restored to normal during androgen restoration and regeneration. In the human prostate, we find progressive rewiring of transcriptional programs across epithelial cell types in benign prostate hyperplasia and treatment-naïve prostate cancer. Notably, we detect copy number variants predominantly within Luminal Acinar cells in prostate tumors, suggesting a bias in their cell type of origin, as well as a larger field of transcriptomic alterations in non-tumor cells. Finally, we observe that Luminal Acinar tumor cells in treatment-naïve prostate cancer display heterogeneous androgen receptor (AR) signaling activity, including a split between high-AR and low-AR profiles with similarity to PrU-like states. Taken together, our analyses of cellular heterogeneity and plasticity provide important translational insights into the origin and treatment response of prostate cancer.

4.
PLoS Biol ; 22(1): e3002089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236818

RESUMO

Viral respiratory infections are an important public health concern due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup, and bacterial coinfections. To understand these interactions within natural infections, we designed a longitudinal cohort study actively surveilling respiratory viruses over the course of 19 months (2016 to 2018) in a diverse cohort in New York City. We integrated the molecular characterization of 800+ nasopharyngeal samples with clinical data from 104 participants. Transcriptomic data enabled the identification of respiratory pathogens in nasopharyngeal samples, the characterization of markers of immune response, the identification of signatures associated with symptom severity, individual viruses, and bacterial coinfections. Specific results include a rapid restoration of baseline conditions after infection, significant transcriptomic differences between symptomatic and asymptomatic infections, and qualitatively similar responses across different viruses. We created an interactive computational resource (Virome Data Explorer) to facilitate access to the data and visualization of analytical results.


Assuntos
Coinfecção , Viroses , Vírus , Humanos , Coinfecção/genética , Viroma , Estudos Longitudinais , Vírus/genética , Viroses/genética , Viroses/epidemiologia , Bactérias/genética , Perfilação da Expressão Gênica
5.
Genome Biol ; 24(1): 291, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110959

RESUMO

Spatial omics technologies can help identify spatially organized biological processes, but existing computational approaches often overlook structural dependencies in the data. Here, we introduce Smoother, a unified framework that integrates positional information into non-spatial models via modular priors and losses. In simulated and real datasets, Smoother enables accurate data imputation, cell-type deconvolution, and dimensionality reduction with remarkable efficiency. In colorectal cancer, Smoother-guided deconvolution reveals plasma cell and fibroblast subtype localizations linked to tumor microenvironment restructuring. Additionally, joint modeling of spatial and single-cell human prostate data with Smoother allows for spatial mapping of reference populations with significantly reduced ambiguity.


Assuntos
Fibroblastos , Próstata , Humanos , Masculino , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 120(46): e2312595120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931099

RESUMO

The NF-κB family of transcription factors and the Ras family of small GTPases are important mediators of proproliferative signaling that drives tumorigenesis and carcinogenesis. The κB-Ras proteins were previously shown to inhibit both NF-κB and Ras activation through independent mechanisms, implicating them as tumor suppressors with potentially broad relevance to human cancers. In this study, we have used two mouse models to establish the relevance of the κB-Ras proteins for tumorigenesis. Additionally, we have utilized a pan-cancer bioinformatics analysis to explore the role of the κB-Ras proteins in human cancers. Surprisingly, we find that the genes encoding κB-Ras 1 (NKIRAS1) and κB-Ras 2 (NKIRAS2) are rarely down-regulated in tumor samples with oncogenic Ras mutations. Reduced expression of human NKIRAS1 alone is associated with worse prognosis in at least four cancer types and linked to a network of genes implicated in tumorigenesis. Our findings provide direct evidence that loss of NKIRAS1 in human tumors that do not carry oncogenic RAS mutations is associated with worse clinical outcomes.


Assuntos
Carcinogênese , Proteínas de Transporte , Genes Supressores de Tumor , Animais , Humanos , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes ras , NF-kappa B/metabolismo , Proteínas ras/metabolismo , Proteínas de Transporte/genética
7.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873382

RESUMO

Adults and children afflicted with the 22q11.2 deletion syndrome (22q11.2DS) exhibit cognitive, social, and emotional impairments, and are at significantly heightened risk for schizophrenia (SCZ). The impact of this deletion on early human brain development, however, has remained unclear. Here we harness organoid models of the developing human cerebral cortex, cultivated from subjects with 22q11.2DS and SCZ, as well as unaffected control samples, to identify cell-type-specific developmental abnormalities arising from this genomic lesion. Leveraging single-cell RNA-sequencing in conjunction with experimental validation, we find that the loss of genes within the 22q11.2 locus leads to a delayed development of cortical neurons. This compromised development was reflected in an elevated proportion of actively proliferating neural progenitor cells, coupled with a decreased fraction of more mature neurons. Furthermore, we identify perturbed molecular imprints linked to neuronal maturation, observe the presence of sparser neurites, and note a blunted amplitude in glutamate-induced Ca2+ transients. The aberrant transcription program underlying impaired development contains molecular signatures significantly enriched in neuropsychiatric genetic liability. MicroRNA profiling and target gene investigation suggest that microRNA dysregulation may drive perturbations of genes governing the pace at which maturation unfolds. Using protein-protein interaction network analysis we define complementary effects stemming from additional genes residing within the deleted locus. Our study uncovers reproducible neurodevelopmental and molecular alterations due to 22q11.2 deletions. These findings have the potential to facilitate disease modeling and promote the pursuit of therapeutic interventions.

8.
Mol Cell ; 83(14): 2434-2448.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402370

RESUMO

Insertions and deletions (indels) are common sources of structural variation, and insertions originating from spontaneous DNA lesions are frequent in cancer. We developed a highly sensitive assay called insertion and deletion sequencing (Indel-seq) to monitor rearrangements in human cells at the TRIM37 acceptor locus that reports indels stemming from experimentally induced and spontaneous genome instability. Templated insertions, which derive from sequences genome wide, require contact between donor and acceptor loci, require homologous recombination, and are stimulated by DNA end-processing. Insertions are facilitated by transcription and involve a DNA/RNA hybrid intermediate. Indel-seq reveals that insertions are generated via multiple pathways. The broken acceptor site anneals with a resected DNA break or invades the displaced strand of a transcription bubble or R-loop, followed by DNA synthesis, displacement, and then ligation by non-homologous end joining. Our studies identify transcription-coupled insertions as a critical source of spontaneous genome instability that is distinct from cut-and-paste events.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Reparo do DNA por Junção de Extremidades , DNA/genética , Instabilidade Genômica , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Cancer Lett ; 570: 216329, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499741

RESUMO

Radiation therapy (RT) is essential for the management of glioblastoma (GBM). However, GBM frequently relapses within the irradiated margins, thus suggesting that RT might stimulate mechanisms of resistance that limits its efficacy. GBM is recognized for its metabolic plasticity, but whether RT-induced resistance relies on metabolic adaptation remains unclear. Here, we show in vitro and in vivo that irradiated GBM tumors switch their metabolic program to accumulate lipids, especially unsaturated fatty acids. This resulted in an increased formation of lipid droplets to prevent endoplasmic reticulum (ER) stress. The reduction of lipid accumulation with genetic suppression and pharmacological inhibition of the fatty acid synthase (FASN), one of the main lipogenic enzymes, leads to mitochondrial dysfunction and increased apoptosis of irradiated GBM cells. Combination of FASN inhibition with focal RT improved the median survival of GBM-bearing mice. Supporting the translational value of these findings, retrospective analysis of the GLASS consortium dataset of matched GBM patients revealed an enrichment in lipid metabolism signature in recurrent GBM compared to primary. Overall, these results demonstrate that RT drives GBM resistance by generating a lipogenic environment permissive to GBM survival. Targeting lipid metabolism might be required to develop more effective anti-GBM strategies.


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Estudos Retrospectivos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Ácidos Graxos Insaturados/uso terapêutico , Ácidos Graxos/metabolismo
10.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292881

RESUMO

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently in early S phase, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication can be restored in Atr-deficient cells by pathways that suppress origin firing, such as downregulation of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and other replication factors.

11.
Nat Commun ; 14(1): 3618, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336885

RESUMO

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication and dNTP levels can be restored in Atr-deficient cells by suppressing origin firing, such as partial inhibition of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and importantly also other replication factors.


Assuntos
Replicação do DNA , Proteínas Serina-Treonina Quinases , Fase S , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proliferação de Células , Dano ao DNA
12.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163102

RESUMO

DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements in neurons. Together, these studies nominate PGBD5 as the long-hypothesized neuronal DNA nuclease required for brain function in mammals.

13.
J Natl Cancer Inst ; 115(7): 838-852, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37040084

RESUMO

BACKGROUND: Adenoid cystic carcinoma (ACC) is a lethal malignancy of exocrine glands, characterized by the coexistence within tumor tissues of 2 distinct populations of cancer cells, phenotypically similar to the myoepithelial and ductal lineages of normal salivary epithelia. The developmental relationship linking these 2 cell types, and their differential vulnerability to antitumor treatments, remains unknown. METHODS: Using single-cell RNA sequencing, we identified cell-surface markers (CD49f, KIT) that enabled the differential purification of myoepithelial-like (CD49fhigh/KITneg) and ductal-like (CD49flow/KIT+) cells from patient-derived xenografts (PDXs) of human ACCs. Using prospective xenotransplantation experiments, we compared the tumor-initiating capacity of the 2 cell types and tested whether one could differentiate into the other. Finally, we searched for signaling pathways with differential activation between the 2 cell types and tested their role as lineage-specific therapeutic targets. RESULTS: Myoepithelial-like cells displayed higher tumorigenicity than ductal-like cells and acted as their progenitors. Myoepithelial-like and ductal-like cells displayed differential expression of genes encoding for suppressors and activators of retinoic acid signaling, respectively. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) signaling (all-trans retinoic acid, bexarotene) promoted myoepithelial-to-ductal differentiation, whereas suppression of RAR/RXR signaling with a dominant-negative RAR construct abrogated it. Inverse agonists of RAR/RXR signaling (BMS493, AGN193109) displayed selective toxicity against ductal-like cells and in vivo antitumor activity against PDX models of human ACC. CONCLUSIONS: In human ACCs, myoepithelial-like cells act as progenitors of ductal-like cells, and myoepithelial-to-ductal differentiation is promoted by RAR/RXR signaling. Suppression of RAR/RXR signaling is lethal to ductal-like cells and represents a new therapeutic approach against human ACCs.


Assuntos
Antineoplásicos , Carcinoma Adenoide Cístico , Receptores do Ácido Retinoico , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Adenoide Cístico/tratamento farmacológico , Agonismo Inverso de Drogas , Estudos Prospectivos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides , Tretinoína
15.
Nat Commun ; 14(1): 1566, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949040

RESUMO

Whereas the contribution of tumor microenvironment to the profound immune suppression of glioblastoma (GBM) is clear, tumor-cell intrinsic mechanisms that regulate resistance to CD8 T cell mediated killing are less understood. Kinases are potentially druggable targets that drive tumor progression and might influence immune response. Here, we perform an in vivo CRISPR screen to identify glioma intrinsic kinases that contribute to evasion of tumor cells from CD8 T cell recognition. The screen reveals checkpoint kinase 2 (Chek2) to be the most important kinase contributing to escape from CD8 T-cell recognition. Genetic depletion or pharmacological inhibition of Chek2 with blood-brain-barrier permeable drugs that are currently being evaluated in clinical trials, in combination with PD-1 or PD-L1 blockade, lead to survival benefit in multiple preclinical glioma models. Mechanistically, loss of Chek2 enhances antigen presentation, STING pathway activation and PD-L1 expression in mouse gliomas. Analysis of human GBMs demonstrates that Chek2 expression is inversely associated with antigen presentation and T-cell activation. Collectively, these results support Chek2 as a promising target for enhancement of response to immune checkpoint blockade therapy in GBM.


Assuntos
Glioblastoma , Glioma , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Quinase 1 do Ponto de Checagem , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos , Imunidade , Microambiente Tumoral
16.
Bioinform Adv ; 3(1): vbad014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874954

RESUMO

Motivation: Here, we performed a benchmarking analysis of five tools for microbe sequence detection using transcriptomics data (Kraken2, MetaPhlAn2, PathSeq, DRAC and Pandora). We built a synthetic database mimicking real-world structure with tuned conditions accounting for microbe species prevalence, base calling quality and sequence length. Sensitivity and positive predictive value (PPV) parameters, as well as computational requirements, were used for tool ranking. Results: GATK PathSeq showed the highest sensitivity on average and across all scenarios considered. However, the main drawback of this tool was its slowness. Kraken2 was the fastest tool and displayed the second-best sensitivity, though with large variance depending on the species to be classified. There was no significant difference for the other three algorithms sensitivity. The sensitivity of MetaPhlAn2 and Pandora was affected by sequence number and DRAC by sequence quality and length. Results from this study support the use of Kraken2 for routine microbiome profiling based on its competitive sensitivity and runtime performance. Nonetheless, we strongly endorse to complement it by combining with MetaPhlAn2 for thorough taxonomic analyses. Availability and implementation: https://github.com/fjuradorueda/MIME/ and https://github.com/lola4/DRAC/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

17.
medRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824731

RESUMO

It has been estimated that 15%-20% of human cancers are attributable to infections, mostly by carcinogenic viruses. The incidence varies worldwide, with a majority affecting developing countries. Here, we present a comparative analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find that virus-positive tumors occur more frequently in males and show geographical disparities in incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct mutation signatures and driver gene mutations and possess a lower somatic mutation burden compared to virus-negative tumors of the same cancer type. For example, compared to the respective virus-negative counterparts, virus-positive cases across different cancer histologies had less often mutations of TP53 and deletions of 9p21.3/ CDKN2 A- CDKN1A ; Epstein-Barr virus-positive (EBV+) gastric cancer had more frequent mutations of EIF4A1 and ARID1A and less marked mismatch repair deficiency signatures; and EBV-positive cHL had fewer somatic genetic lesions of JAK-STAT, NF-κB, PI3K-AKT and HLA-I genes and a less pronounced activity of the aberrant somatic hypermutation signature. In cHL, we also identify germline homozygosity in HLA class I as a potential risk factor for the development of EBV-positive Hodgkin lymphoma. Finally, an analysis of clinical trials of PD-(L)1 inhibitors in four virus-associated cancers suggested an association of viral infection with higher response rate in patients receiving such treatments, which was particularly evident in gastric cancer and head and neck squamous cell carcinoma. These results illustrate the epidemiological, genetic, prognostic, and therapeutic trends across virus-associated malignancies.

19.
Genome Med ; 15(1): 8, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759885

RESUMO

BACKGROUND: Efficient presentation of mutant peptide fragments by the human leukocyte antigen class I (HLA-I) genes is necessary for immune-mediated killing of cancer cells. According to recent reports, patient HLA-I genotypes can impact the efficacy of cancer immunotherapy, and the somatic loss of HLA-I heterozygosity has been established as a factor in immune evasion. While global deregulated expression of HLA-I has also been reported in different tumor types, the role of HLA-I allele-specific expression loss - that is, the preferential RNA expression loss of specific HLA-I alleles - has not been fully characterized in cancer. METHODS: Here, we use RNA and whole-exome sequencing data to quantify HLA-I allele-specific expression (ASE) in cancer using our novel method arcasHLA-quant. RESULTS: We show that HLA-I ASE loss in at least one of the three HLA-I genes is a pervasive phenomenon across TCGA tumor types. In pancreatic adenocarcinoma, tumor-specific HLA-I ASE loss is associated with decreased overall survival specifically in the basal-like subtype, a finding that we validated in an independent cohort through laser-capture microdissection. Additionally, we show that HLA-I ASE loss is associated with poor immunotherapy outcomes in metastatic melanoma through retrospective analyses. CONCLUSIONS: Together, our results highlight the prevalence of HLA-I ASE loss and provide initial evidence of its clinical significance in cancer prognosis and immunotherapy treatment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Alelos , Adenocarcinoma/genética , Estudos Retrospectivos , Neoplasias Pancreáticas/genética , Antígenos de Histocompatibilidade Classe I/genética , RNA
20.
Nat Struct Mol Biol ; 30(1): 99-106, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564591

RESUMO

Nuclear actin-based movements have been shown to orchestrate clustering of DNA double-strand breaks (DSBs) into homology-directed repair domains. Here we describe multiscale three-dimensional genome reorganization following DNA damage and analyze the contribution of the nuclear WASP-ARP2/3-actin pathway toward chromatin topology alterations and pathologic repair. Hi-C analysis reveals genome-wide, DNA damage-induced chromatin compartment flips facilitated by ARP2/3 that enrich for open, A compartments. Damage promotes interactions between DSBs, which in turn facilitate aberrant, actin-dependent intra- and inter-chromosomal rearrangements. Our work establishes that clustering of resected DSBs into repair domains by nuclear actin assembly is coordinated with multiscale alterations in genome architecture that enable homology-directed repair while also increasing nonhomologous end-joining-dependent translocation frequency.


Assuntos
Actinas , Translocação Genética , Humanos , Actinas/metabolismo , Polimerização , Cromatina , Reparo do DNA por Junção de Extremidades , Dano ao DNA , Reparo do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...